ar X iv : 0 90 8 . 42 30 v 1 [ m at h . A G ] 2 8 A ug 2 00 9 GENERALISED HASSE VARIETIES AND THEIR JET SPACES
نویسنده
چکیده
Abstract. Building on the abstract notion of prolongation developed in [7], the theory of iterative Hasse rings and schemes is introduced, simultaneously generalising difference and (Hasse-)differential rings and schemes. This work provides a unified formalism for studying difference and differential algebraic geometry, as well as other related geometries. As an application, Hasse jet spaces are constructed generally, allowing the development of the theory for arbitrary systems of algebraic partial difference/differential equations, where constructions by earlier authors applied only to the finite dimensional case. In particular, it is shown that under appropriate separability assumptions a Hasse variety is determined by its jet spaces at a point.
منابع مشابه
ar X iv : m at h / 06 07 13 0 v 1 [ m at h . A G ] 5 J ul 2 00 6 TWISTED LOOP GROUPS AND THEIR AFFINE FLAG VARIETIES
متن کامل
A Geometric Version of Bgp Reflection Functors
Quiver Grassmannians and quiver flags are natural generalisations of usual Grassmannians and flags. They arise in the study of quiver representations and Hall algebras. In general, they are projective varieties which are neither smooth nor irreducible. We use a scheme theoretic approach to calculate their tangent space and to obtain a dimension estimate similar to the one of Reineke in [Rei02]....
متن کاملGeneralised Hasse-schmidt Varieties and Their Jet Spaces
Building on the abstract notion of prolongation developed in [10], the theory of iterative Hasse-Schmidt rings and schemes is introduced, simultaneously generalising difference and (Hasse-Schmidt) differential rings and schemes. This work provides a unified formalism for studying difference and differential algebraic geometry, as well as other related geometries. As an application, Hasse-Schmid...
متن کاملGeneralised Hasse Varieties and Their Jet Spaces
Building on the abstract notion of prolongation developed in [7], the theory of iterative Hasse rings and schemes is introduced, simultaneously generalising difference and (Hasse-)differential rings and schemes. This work provides a unified formalism for studying difference and differential algebraic geometry, as well as other related geometries. As an application, Hasse jet spaces are construc...
متن کاملar X iv : m at h / 04 04 18 6 v 1 [ m at h . R A ] 8 A pr 2 00 4 MULTIPLICATIVE PREPROJECTIVE ALGEBRAS , MIDDLE CONVOLUTION AND THE DELIGNE - SIMPSON PROBLEM
We introduce a family of algebras which are multiplicative analogues of preprojective algebras, and their deformations, as introduced by M. P. Holland and the first author. We show that these algebras provide a natural setting for the ‘middle convolution’ operation introduced by N. M. Katz in his book ‘Rigid local systems’, and put in an algebraic setting by M. Dettweiler and S. Reiter, and by ...
متن کامل